Saturday, August 27, 2016

Pembahasan Gelombang Stasioner Lengkap dengan Contoh Soalnya

Seperti yang kita ketahui bersama, gelombang stasioner merupakan salah satu jenis gelombang yang dikelompokan berdasarkan Amplitudonya. Apakah termasuk yang Amplitudonya tetap atau berubah-rubah. Apabila amplitudonya tetap maka bisa dikatakan itu adalah gelombang berjalan sedangkan apabila amplitudonya berubah-rubah maka gelombang stasionerlah yang termasuk didalamnya.

Nah dipostingan kali ini, topik utama yang akan dibahas adalah berkaitan dengan gelombang stasioner. Pada kosep ini kalian akan mempelajari berkenaan dengan persamaan-persamaan gelombang stasioner, contoh soal dan lain sebagainya. Bagi kalian yang ingin mempelajarinya, silahkan simak ulasan-ulasannya dibawah!

Gelombang Stasioner Pada Ujung Terikat

Maksud dari gelombang stasioner pada ujung terikat adalah suatu gelombang yang terjadi pada sebuah dawai/tali dan salah satu ujungnya terikat. Ada dua hal yang akan dibahas pada saat kita mempelajari konsep ini, yaitu menentukan Persamaan & Amplitudo, simpul dan perut pada gelombang stasioner.

 

a. Menentukan persamaan gelombang

Pada dasarnya persamaan gelombang stasioner bisa dituliskan sebagai berikut:

y = 2A sin kx cos ωt
y = Ap sin cos ωt

dengan Amplitudo Stasionernya: 2A sin kx

Keterangan: 
Ap = Amplitudo Gelombang Stasioner (m);
k = Bilangan Gelombang;
λ = Panjang Gelombang  (m);

b. Menentukan simpul gelombang pada ujung terikat

Perhatikan gambar berikut!



Berdasarkan gambar tersebut kita melihat yang namanya simpul-simpul gelombang. Nah untuk menentukan letak-letak simpul tersebut kita bisa mempergunakan persamaan:

xn+1= (2n) λ /4

dengan n = 0, 1, 2, . . .

Untuk simpul ke-1, n = 0, perut ke-2, n = 1 dan seterusnya.

c. Menentukan perut gelombang pada ujung terikat

Perhatikan gambar berikut!



Setelah mempelajari simpul gelombang, selanjutnya kita akan mengkaji tentang perut pada gelombang. Berdasarkan gambar gambar diatas kita melihat yang namanya perut-perut gelombang. Nah untuk menentukan letak-letak perut gelombang tersebut kita bisa mempergunakan persamaan:

xn+1 = (2n + 1) λ/4

dengan n = 0, 1, 2, . . .

Untuk simpul ke-1, n = 0, perut ke-2, n = 1 dan seterusnya.

Gelombang Stasioner Pada Ujung Bebas

Kebalikan dari gelombang stasioner ujung terikat, pada gelombang stasioner ujung bebas salah satu ujungnya tidak diikat secara kuat melainkan dibiarkan longgar sehingga ujung tali bisa bergerak secara bebas. 

a. Menentukan persamaan gelombang stasioner ujung bebas
 
Pada dasarnya persamaan gelombang stasioner bisa dituliskan sebagai berikut:

y = 2A cos kx sin ωt
y = Ap sin ωt

dengan Amplitudo Stasionernya: 2A cos kx

Keterangan: 
Ap = Amplitudo Gelombang Stasioner (m);
k = Bilangan Gelombang;
λ= Panjang Gelombang  (m);

b. Menentukan letak simpul pada ujung bebas gelombang stasioner

Perhatikan gambar berikut!



Berdasarkan gambar di atas kita melihat yang namanya simpul-simpul gelombang. Untuk mengetahui letak-letak gelombang yang dihitung dari ujung gelombang, maka bisa dipergunakan persamaan:

xn+1 = (2n + 1) λ/4

dengan n = 0, 1, 2, . . .

Untuk simpul ke-1, n = 0, perut ke-2, n = 1 dan seterusnya.

c. Menentukan perut gelombang stasioner pada ujung bebas

Perhatikan gambar berikut!



Untuk menentukan letak-letak perut seperti yang ditunjukan diatas, bisa dipergunakan persamaan berikut:

xn+1 = (2n) λ/4

dengan n = 0, 1, 2, . . .

Untuk perut ke-1, n = 0, perut ke-2, n = 1 dan seterusnya.

Contoh Soal:

Sebuah tali salah satu ujungnya digetarkan terus menerus dan ujung lainnya terikat kuat. Jika amplitudo yang diberikan adalah 10 cm, frekuensi 4 Hz dan cepat rambat gelombang pada tali 4 m/s, tentukanlah:
a. Amplitudo sebuah titik yang berjarak 1 m dari titik ikat.
b. Jarak simpul ke-3 dari ujung terikat.
c. jarak perut ke-2 dari ujung terikat.

Jawab:

Diketahui :
A = 10 cm = 0,1 m
f  = 4 Hz
v  = 4 m/s

Ditanyakan:
a. Ap . . .?
b. x3 . . . ?
c. x2 . . . ?

Penyelesaian:

Untuk menyelesaikan soal diatas, ada beberapa besaran/nilai yang perlu dicari terlebih dahulu, yaitu panjang gelombang λ dan bilangan gelombang k.

Menghitung panjang gelombang:

λ = v/f
    = 4/4
    = 1 meter

Menghitung bilangan gelombang k:

k = 2π/λ
    = 2π/1
    = 2π

a. Amplitudo suatu titik pada jarak 1 m

Ap = 2A cos kx = 2 x 0,1 x cos (2π . 1) = 0,2 meter.

b. Simpul ke-3
x3 = (2n + 1) λ/4 = (2.2 + 1) 1/4 = 1,25 meter

c. Perut ke-2
x3 = (2n) λ/4 = (2.1) 1/4 = 0,5 meter

Share this

5 Responses to "Pembahasan Gelombang Stasioner Lengkap dengan Contoh Soalnya"

  1. Itu salah yang contoh soalnya, rumus yang dipake itu bebas, sedangkan di soalnya terikat

    ReplyDelete
  2. This comment has been removed by the author.

    ReplyDelete
  3. rumusnya salah tuh yg amplitudo, harusnya untuk gelombang stasioner ujung tetap rumus amplitudonya = 2A sin kx.
    Mohon diperbaiki min... :)

    ReplyDelete
  4. Aku fikir guruku yang salah pas jelasin eh ternyata mimin nya keliru 😂

    ReplyDelete